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Classification of single queues: many features

Specifications:

Deterministic vs stochastic models

Fluid (R+) vs discrete (N) models over time and data

Rhythm of arrivals (periodic, Poisson, unknown, ...)

Rhythm of departures / services

Service/scheduling policy (FIFO, priorities, Round-robin ...)

Sizes of buffer / of packets ...
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Classification of single queues: Kendall’s notation (1953)

Kendall’s notation for a single queue: A/B/c/K /N /P where

A denotes the distribution of inter-arrival times

B denotes the distribution of service times

c is the number of servers (possibly ∞)

K is the size of the buffer (possibly ∞)

N is the size of the population served (possibly ∞)

P is the scheduling policy (e.g. FIFO)

Some usual notations:

M (Markov): i.i.d. random times of exponential law

D (Deterministic): constant time (one fixed value)

G (General): i.i.d. random times of unknown law

By default: K = N =∞, P = FIFO, e.g. M/M/c = M/M/c/∞/∞/FIFO
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Classical questions about queues

Some classical questions:

What is the average waiting time for a client which arrives ?

What fraction of time is the server busy ?

What is the distribution of the queue length ?

What is the shape of the output traffic ?

B Beware of the definition of average, e.g. it may mean

empirical average of a parameter over one or several
trajectories, observed over finite or infinite interval of time
(time average over finite or infinite horizon)

average of a parameter with regard to its probability
distribution at some fixed time, the system is sometimes
assumed to be at a stationary state (if it exists)
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Classical questions: M/M/1 queues

Examples: M(λ)/M(µ)/1 queue at the stationary state/mode.
Math model: Continuous Time Markov Chain (requires λ<µ to
have an invariant distribution)
Some classical questions:

Distribution of the queue length (buffer+server) = geometric
invariant distrib

Average number of clients (buffer+server) = λ/(µ−λ)

Average waiting time (including service time) = 1/(µ−λ)

Shape of the output traffic = Poisson of intensity λ

Fraction of time the server is busy = λ/µ
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Classical questions: G/G/1 queues

Examples: G/G/1 queue
Math model: not markovian in general (requires results about
renewal processes)

Definition (Renewal process)

A renewal process (Tn)n∈N of rate µ is defined by T0 = 0 and for n ≥ 1,
Tn = I1 +·· ·+ In where (In)n≥1 i.i.d. r.v. with values in R+ such that
E(I0) = 1/µ. It is associated with its counting process
Nt = max{n | Tn ≤ t } for t ∈R+.

Theorem (LLN for renewal processes)

Let (Tn) be a renewal process of rate µ and let (Nt ) be its counting
process. Then

Nt

t
a.s.−−−→

t→∞ µ and
E(Nt )

t
−−−→
t→∞ µ
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Classical questions: G/G/1 queues

Proposition (Stability of G/G/1 queues)

In a queue with finite initial size, where arrivals follows a renewal
process of rate λ and service times are i.i.d. with average 1/µ, if λ<µ,
then the queue size will reach 0 in finite time a.s.

Proof: Let Tn arrival time of new client n. LLN ensures Tn
n

a.s.−−→ 1
λ .

Let Z0 time to serve all clients initially in the queue, let si time to
serve new client i , E(si ) = 1/µ. Suppose that server always remains
busy, then new client n will leave at time Z0 +Sn with
Sn = s1 +·· ·+ sn . LLN ensures Z0+Sn

n
a.s.−−→ 1

µ . Since 1/µ< 1/λ, it
would mean that for large n, client n leaves the queue before its
arrival. Impossible.
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Little’s law: general statement

Little’s law for a single queue (in short)

average nb of clients N in a queue
=

average arrival rate λ × average sojourn time T

Use: intuitive relation avoiding sometimes complex calculations

Warning: B average yet to define ...
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Examples: estimating the capacity of a router

Router model: 1 server + 1 buffer
Experiment: expose the router to an input traffic with throughput
rate = 100 packets/sec and measure the number of packets in the
whole router and in the sole buffer. Each packet of size 900 bytes.
Measures: no packet lost, average nb of packets in the system = 5.5,
in the buffer = 4.8
Analysis:

Average nb of packets in the server = 5.5−4.8 = 0.7 packets

Average arrival rate at the server = 100 packets/sec (no loss)

Average sojourn time = 0.7/100 = 7×10−3 sec (with Little’s law)

Router capacity = 1/7.10−3 packets/sec ≈ 1Mb/s
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Examples: D/D/1 and M/M/1 queues

Little’s law for D(r )/D(s)/1: constant inter-arrival time r ∈R+ and
service time s ∈R+. Queue size tends to ∞ iff r < s. If r ≥ s and even
if initially the queue is not empty, then asympotically at most 1
client in the queue, with waiting time = service time s and during
time r − s empty queue before next client arrives. Thus N = s/r ,
T = s and the rate of arrivals λ= 1/r . Little’s law works.

Little’s law for M(λ)/M(µ)/1: at stationary state when λ<µ

N = λ

µ−λ =λ× 1

µ−λ =λ×T
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Deterministic general case: finite horizon

Pseudo-inverse: f (−1)(n) = inf{t | f (t ) ≥ n}, useful for staircase
functions A et B ↗ and right continuous.
Definitions & notations:

A(t ) : nb n ∈N of clients arrived between time 0 and t ∈R+.
B(t ) : nb n ∈N of clients left between time 0 and t ∈R+.

N (t )
def= A(t )−B(t ) : nb of clients in the queue at time t .

T (n)
def= B (−1)(n)− A(−1)(n) : delay for client n° n (if FIFO).

Averages: “finite horizon” = over [0, t ],

λ
def= A(t )/t (arrival rate)

T
def= 1

A(t )

∑A(t )
i=1 T (i ) (average delay)

N
def= 1

t

∫ t
x=0 N (x)d x (average load)

Theorem (Little 1961)

If A(t ) = B(t ), then N =λT .
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Deterministic general case: notations
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Deterministic general case: finite horizon

N = 1

t

∫ t

x=0
N (x)d x =

1

t

A(t )∑
i=1

T (i ) = A(t )

t

1

A(t )

A(t )∑
i=1

T (i ) =λT
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Deterministic general case: ∞ horizon

Pseudo-inverse: f (−1)(n) = inf{t | f (t ) ≥ n}, useful for staircase
functions A et B ↗, right continuous, with limit +∞.
Definitions & notations:

A(t ) : nb n ∈N of clients arrived between time 0 and t ∈R+.
B(t ) : nb n ∈N of clients left between time 0 and t ∈R+.

N (t )
def= A(t )−B(t ) : nb of clients in the queue at time t .

T (n)
def= B (−1)(n)− A(−1)(n) : delay for client n° n (if FIFO).

Asymptotic averages: provided such limits exist,

λ
def= limt→+∞ A(t )

t (arrival rate)

T
def= limn→+∞ 1

n

∑n
i=1 T (i ) (average delay)

N
def= limt→+∞ 1

t

∫ t
x=0 N (x)d x (average load)

Theorem (Brumelle/Stidham 1971/1974)

If λ and T exist and are finite, then N exists and N =λT .
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Deterministic general case: ∞ horizon

Hypotheses: A,B : R+ →N, ↗, right continuous, with limit +∞.

Lemma

lim
t→+∞

A(t )
t =λ⇐⇒ lim

n→+∞
A(−1)(n)

n = 1
λ (true for λ ∈R+∪ {+∞})

Lemma

If T finite, then lim
n→+∞

T (n)
n = 0.

Lemma

If T and λ finite, then lim
t→+∞

A(t )
t =λ =⇒ lim

t→+∞
B(t )

t =λ.
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• Lemma 1 Suppose lim
t→+∞

A(t )
t =λ. By def of A(−1) and right continuity of A,

A(A(−1)(n)) ≥ n ≥ A(A(−1)(n)−1). Thus,
A(A(−1)(n))

A(−1)(n)
≥ n

A(−1)(n)
≥ A(A(−1)(n)−1)

A(−1)(n)
=⇒

n→+∞λ≥ lim
n→+∞

n
A(−1)(n)

≥λ (since A(−1)(n) →+∞)

Suppose lim
n→+∞

A(−1)(n)
n = 1

λ
. By def of A(−1), A(−1)(A(t )) ≤ t < A(−1)(A(t )+1). Thus,

A(−1)(A(t ))
A(t ) ≤ t

A(t ) < A(−1)(A(t )+1)
A(t ) =⇒

t→+∞
1
λ

≤ lim
t→+∞

t
A(t ) ≤ 1

λ
(since A(t ) →+∞)

• Lemma 2 If T <+∞, then if n →+∞, T (n)
n = 1

n
∑n

i=1 T (i )− n−1
n

1
n−1

∑n−1
i=1 T (i ) → T −1×T = 0.

• Lemma 3 If A(t )
t →λ, then A(−1)(n)

n → 1
λ

(Lemma 1).

By def of T , B(−1)(n) = A(−1)(n)+T (n) =⇒
Lemma 2

B(−1)(n)
n = A(−1)(n)

n + T (n)
n → 1

λ
+0 = 1

λ
.

Thus B(t )
t →λ (Lemma 1).

Lemma 1 enables to switch from vertical view (A(t )/t ) to horizontal view to exploit the hypothesis about delays

T = B(−1) − A(−1), then to come back to the vertical view (B(t )/t ).
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Deterministic general case: ∞ horizon

B(t )∑
i=1

T (i ) ≤

∫ t

x=0
N (x)d x

≤
A(t )∑
i=1

T (i )
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Deterministic general case: ∞ horizon
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Deterministic general case: ∞ horizon

1

t

B(t )∑
i=1

T (i ) ≤ 1

t

∫ t

x=0
N (x)d x ≤ 1

t

A(t )∑
i=1

T (i )
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Deterministic general case: ∞ horizon

B(t )

t

1

B(t )

B(t )∑
i=1

T (i ) ≤ 1

t

∫ t

x=0
N (x)d x ≤ A(t )

t

1

A(t )

A(t )∑
i=1

T (i )
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B(t )

t

1

B(t )

B(t )∑
i=1

T (i ) ≤ 1

t

∫ t
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t

1

A(t )
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• During the last step, when one makes t →+∞, the hypotheses T and λ finite are used, to avoid an undefinite
product. Note that it is the first time that we use λ<+∞ (we already used T <+∞ in preliminary lemmas).
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Little’s law: applications

Practice: short calculations without precise modeling (assuming
that Little’s law is robust enough to work for the studied system).

Theory: if a model is ergodic, asympotic average of a parameter
over one single trajectory = average of the parameter for the
invariant distribution. Thus Little’s law enables to derive some
formulas about averages for the invariant distribution (e.g. average
sojourn time from average buffer size in M/M/1 queues).
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Little’s law: a reminder figure

M1IF - ENS Lyon Performance Evaluation & Networks 17/21



Single queues
Kendall’s notation
Little’s law
PASTA property

PASTA property: definition

Vocabulary: PASTA = Poisson Arrivals See Time Averages

Framework: probabilistic model of a system, at stationary state (if
it exists), with Poissonian input traffic (each arrival induces state
transition in the system). For each state of the system, focus on two
probabilities:

1 Probability of the state seen by a random outside observer
πi = probability that system in state i at a random instant

2 Probability of the state seen by an arriving client
π∗

i = probability that system in state i just before (a randomly
chosen) arrival

Remark: in general πi 6=π∗
i but the Poisson effect yields an equality
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PASTA property: counter-examples

Example 1: accessing your own laptop (one client, one server){
state 0 = laptop free

state 1 = laptop occupied{
π∗

0 = 1 (your own laptop is always free when needed)

π∗
1 = 0{

π0 = proportion of time the laptop is free (< 1)

π1 = proportion of time the laptop is occupied (> 0)

Remark: here arrival process is not Poisson, when an arrival has
occurred (i.e. you have started to work with your laptop) for a while
it is unlikely that another arrival occurs (i.e. you have stopped the
previous session and started a new one). Thus arrivals at different
times are not independent.
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PASTA property: counter-examples

Example 2: deterministic periodic behavior (one client, one server),
e.g. one new request every 10 sec and service time = 8 sec.
Framework a bit different here since not a probabilistic model, but
one can study the PASTA property by setting a large time interval
[0, t ] where the random observer chooses observation time
uniformly (state 0 = server free, state 1 = server occupied).{
π∗

0 = 1 (server always free before next arrival)

π∗
1 = 0{

π0 ≈ 0.2

π1 ≈ 0.8
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PASTA property: Poisson processes

Theorem (PASTA property for Poisson processes)

With the previous notations, if the input traffic is a Poisson process,
then for any state i of the system, π∗

i =πi .

Proof: Arrival history before the instant of consideration,
irrespective whether we are considering a random instant or an
arrival instant, are stochastically the same: a sequence of arrivals
with exponentially distributed interarrival times. Moreover
remaining time to next arrival has the same exponential
distribution irrespective of the time that has already elapsed since
the previous arrival.
Both come from memoryless property of exponential distribution
(the same view also holds in reversed time, i.e. looking backwards).
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PASTA property: Poisson processes

Theorem (PASTA property for Poisson processes)

With the previous notations, if the input traffic is a Poisson process,
then for any state i of the system, π∗

i =πi .

Proof: Since the stochastic characterization of the arrival process
before the instant of consideration is the same, irrespective how the
instant has been chosen) the state distributions of the system
(induced by the past arrivals processes) at the instant of
consideration must be the same in both cases.
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